목록오류역전파 (2)
Broccoli's House
※ 이 글의 내용은 O'REILLY의 책을 기반으로 한다. 오차역전파법 : 역전파 및 예시 계산 그래프 - 계산 그래프(Computational Graph) : 계산 그래프란 계산 과정을 그래프로 나타낸 것이다. 그래프는 자료구조의 일종으로 여러 개의 노드(node)와 그 노드들을 잇는 선, 엣지(edge)로 표현된다. 덧셈 역전파 - z=x+y 수식을 계산 그래프로 나타내면 왼쪽 위와 같다. 우측은 좌측의 계산 그래프의 역전파이다. 계산 그래프의 최종 출력이 L이라하면, z가 L에 끼치는 영향력은 ∂L/∂z으로 표현된다. 마찬가지로, x가 최종 출력 L에 끼치는 영향력은 ∂L/∂x, y가 최종 출력 L에 끼치는 영향력은 ∂L/∂y이다. ∂L/∂x에 연쇄 법칙을 적용하면 ∂L/∂x는 ∂L/∂z에 ∂z/∂..
※ 이 글의 내용은 O'REILLY의 책을 기반으로 한다. 오차역전파법 : 소개 오차역전파법 - 오차역전파법(Back Propagation) : 신경망 학습에서, 신경망의 가중치(weight)에 대한 손실 함수의 기울기를 구하기 위해 미분을 사용했다. 미분 계산은 단순하고 구현하기 쉽지만, 시간이 오래걸리는 단점이 존재한다. 즉 초기 가중치에서의 손실 함수를 계산하고 그것을 미분하여 다음 가중치 계산에 사용하는데, 뉴런이 많아져 각 노드의 매개변수(가중치, 편향)가 많아지면 그 모든 매개변수를 학습시키기란 매우 어렵다는 것이다. 이것을 효율적으로 하기 위한 것이 오차역전파 알고리즘이다. - 학습이란 각 뉴런의 매개변수(가중치, 편향)에 의해 계산된 최종 출력을 토대로 손실함수(데이터의 레이블과 실제 출력..