목록매개변수 (2)
Broccoli's House
※ 이 글의 내용은 O'REILLY의 책을 기반으로 한다. 학습 관련 기술 : 초매개변수 설정 초매개변수 - 초매개변수(하이퍼파라미터, hyper-parameters) : 초매개변수, 하이퍼 파라미터란 가중치(weight)같이 모델이 스스로 설정 및 갱신하는 매개변수가 아닌, 사람이 직접 설정해주어야 하는 매개변수를 말한다. 신경망에서는 뉴런의 수, 배치(batch)의 크기, 학습률(learning rate), 가중치 감소시의 규제 강도(regularization strength) 등이 있다. 이러한 초매개변수 값에 따라 모델의 성능이 크게 좌우되기도 한다. - 초매개변수 값은 매우 중요하지만, 사람이 결정해야하는 것이기에 값을 결정하기까지 많은 시행착오를 필요로 한다. 이러한 시행착오를 그나마 줄이기 ..
※ 이 글의 내용은 O'REILLY의 책을 기반으로 한다. 학습 관련 기술 : 매개변수 갱신 매개변수 갱신 - 최적화(Optimization) : 학습 모델과 실제 레이블과의 차이는 손실 함수로 표현되며, 학습의 목적은 오차, 손실 함수의 값을 최대한 작게 하도록하는 매개변수(가중치, 편향)를 찾는 것이다. 즉, 매개변수의 최적값을 찾는 문제이며, 이러한 문제를 푸는 것을 최적화라 한다. - 손실 함수를 최소화하는 매개변수를 찾는 방법에는 여러 가지가 있다. 가장 간단하게는 손실 함수의 그래프에서 가장 낮은 지점을 찾아가도록 손실 함수의 기울기를 구해 최적값을 찾아가는 확률적 경사 하강법(SGD)과 이 방법의 단점을 보완한 모멘텀 및 AdaGrad, Adam 방법 등이 있다. 이것들을 하나하나 알아보도록..